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ABSTRACT

This review systematically covers sequence-specific gene regulation by miRNAs and dsRNA-derived siRNAs in 
animals and plants from the perspective of target RNA recognition, potential for non-target (off-target) effects, 
and reliable determination of biological effects of small RNAs in animals and plants. I will review sequence 
complementarity between target RNA and small RNA (siRNA or miRNA), including tolerance to mismatches, 
parameters influencing sequence complementarity (and target recognition and repression) and discuss specificity 
of targeting by miRNAs and off-targeting by siRNAs. In addition, I will discuss reliable identification of target 
RNAs (and, eventually, biological effects). Accordingly, the text is divided into the following four sections: (I) 
Small RNA:target RNA base pairing, (II) Other key factors influencing target recognition and repression, (III) 
Off-targeting – causes and remedies, (III) Smal RNA target identification. 

Introduction

Within the complex world of RNA silencing, two related yet distinct pathways exist in 
animals and plants: RNA interference (RNAi) and microRNA (miRNA) pathways (Fig. 1). 
Both pathways employ small RNAs loaded on Argonaute proteins as sequence-specific 
guides for post-transcriptional repression. The elementary difference between these two 
pathways is that miRNA pathways employ genome-encoded small RNAs with defined 
sequences (i.e. miRNAs can be annotated) while RNAi is initiated by processing long dou-
ble-stranded RNA (dsRNA) into a mixture of short interfering RNAs (siRNAs). Thus, the 
miRNA pathway in a cell employs a population of miRNA molecules that can be clustered 
based on unique sequences, corresponding to specific positions in miRNA precursors. In 
other words, the major distinction between RNAi and miRNA pathways is the origin of 
small RNAs and their information content. In terms of their mode of action, siRNAs and 
miRNAs can be in some cases indistinguishable.
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Figure 1 miRNA and RNAi pathways in animals and plants
The schemes depict key components of miRNA and RNAi pathways in the main eukaryotic model 
systems

In animals, the miRNA pathway, which is primarily a gene-regulating pathway, is highly 
conserved.	The	canonical	miRNA	biogenesis	is	a	spatially	separated	into	two-steps.	The	
fi	rst	step	takes	place	in	the	nucleus	where	RNase	III	Drosha,	a	component	of	the	Micro-
processor complex, releases a precursor miRNA (pre-miRNA) from a primary miRNA 
transcript (pri-miRNA). Next, a pre-miRNA is transported to the cytoplasm where it is 
cleaved by a second RNase III Dicer. Dicer releases a miRNA duplex of which one strand 
will	be	loaded	on	an	Argonaute	protein.	The	miRNA	pathway	in	plants	operates	similarly	
but employs only a single nuclear Dicer-like 1 (DCL1) RNase III to produce pre-miRNAs 
and	miRNAs.	The	second	important	difference	is	the	methylation	of	plant	miRNAs	at	their	
3’ end mediated by HEN1 methyltransferase.
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The	RNAi	pathway	is	much	more	diverse	across	animals	and	plants.	It	is	conceivable	
given the antiviral role of RNAi where the parasite:host interactions can accelerate evo-
lution of RNAi pathways in different taxons. Despite the differences, RNAi and miRNA 
pathways share common features, which include biogenesis of small RNAs involving Dicer 
and effector complexes containing an Argonaute protein carrying a small RNA. Argonaute 
proteins	are	composed	of	four	main	domains:	the	central	PAZ	domain,	the	C-terminal	PIWI	
(P-element induced wimpy testis), the N-terminal domain, and the MID domain between 
PAZ	and	PIWI	domains	(Fig.	2).	The	PIWI	domain	has	an	RNase	H-like	fold	and	carries	
a	“slicer”	activity	(Ma	et	al.,	2005;	Parker	et	al.,	2004;	Song	et	al.,	2004;	Yuan	et	al.,	2005).	
Argonaute	proteins	fall	into	three	distinct	groups	(reviewed	in	Faehnle	and	Joshua-Tor,	
2007): (1) AGO proteins, found in all kingdoms, (2) PIWI proteins found in animals, and 
(3) WAGO proteins found only in nematodes. 

From the mechanistic perspective, post-transcriptional repression by small RNAs 
employs two distinct yet related (and often overlapping) modes of action:

Direct endonucleolytic RNA cleavage mediated	by	the	so-called	“slicer”	activity	of	an	
Argonaute	protein.	This	mode	of	action	needs	two	conditions	to	be	met:	(i)	the	Argonaute	
protein has the slicer activity (not all family members have it) and (ii) there needs to be 
extensive base pairing between the Argonaute-bound small RNA and the cognate RNA. 
Extensive base pairing positions the cognate RNA such that it can be sliced in the position 
corresponding	the	middle	of	the	guiding	small	RNA.	This	mode	of	action	has	been	tradi-
tionally	associated	with	RNAi	and	will	be	refered	to	as	“RNAi-like”	targeting.	However,	it	
should be pointed out that the two conditions for RNA-like targeting do not exclude miR-
NAs and, in fact, it is well established that miRNAs loaded on a slicing Argonaute would 
guide slicing of perfectly complementary cognate RNAs.

Indirect mRNA destabilization, which is found when an Argonaute protein lacks the 
slicing activity or the base pairing is incomplete and prevents positioning of the cognate 
RNA (typically lack of base pairing in the middle of the small RNA:target RNA duplex. In 
these	cases,	Argonaute-bound	small	RNAs	provide	suffi	ciently	stable	interaction	for	target	
recognition while the repression is mediated by Argonaute-interacting partners. While the 
precise mode of action is still debated and may vary between different cell types and model 
systems, it seems to be coupled with common mechanisms of mRNA destabilization, i.e. 
deadenylation and decapping.

At least four types of RNAi & miRNA pathway combinations can be recognized in ani-
mals and plants (Fig. 1):
(I) overlapping miRNA and RNAi pathways with a single-set of Dicer and Argonaute 

proteins and without an RNA-dependent RNA polymerase (RdRP) – typical for 
vertebrates	especially	mammals.	The	molecular	machinery	in	the	cell	primarily	pro-
duces miRNAs but it can also support canonical RNAi, which can be observed under 
rare	circumstances.	The	term	RNAi	in	mammals	is	commonly	used	for	RNAi-like	
cleavage mediated by a siRNA loaded on AGO2. However, siRNAs are being loaded 
on all four mammalian AGO protein (Meister et al., 2004), and once loaded, their 
behavior	is	indistinguishable	from	miRNAs.	This	functional	overlap	at	the	level	of	
the	effector	complex	is	the	major	source	of	the	so-called	“off-targeting”	phenome-
non where siRNAs target also other mRNAs through miRNA-like mode of action.
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(II) separated miRNA and RNAi pathways with dedicated Dicer and Argonaute pro-
teins (no	RdRPs).	This	arrangement	is	observed	in	Arthropods	(Drosophila).

(III) distinct miRNA pathway and a complex RNAi system employing RdRp(s) shar-
ing a single Dicer.	This	arrangement	is	observed	in	nematodes	where	expansion	of	
Argonaute proteins created a highly complex RNA silencing system

(IV) separated miRNA pathway and a complex RNAi system employing RdRp(s) with 
multiple Dicer and Argonaute proteins.	This	arrangement	is	observed	in	plants.

Mechanistical	aspects	of	target	recognition	and	its	specifi	city	will	be	discussed	next.

Small RNA:target RNA base pairing

A small RNA loaded on an Argonaute protein functions as a guide selectively recognizing 
cognate RNAs through sequence complementarity. Sequence complementarity can be high 
(full or almost full) or partial. High sequence complementarity operates in RNAi-mediated 
innate immunity and genome defense where it is desirable to degrade all nucleic acids with 
highly similar sequences. High sequence complementarity is also observed for many plant 
miRNAs, which could be, at least in part, a consequence of their evolution (Allen et al., 
2004; Llave et al., 2002). Animal miRNAs and some plant miRNAs have typically partial 
sequence complementarity, which seems to be non-randomly distributed along a small RNA 
(reviewed, for example in Bartel, 2009). Partial complementarity could be seen as a min-
imal requirement for functional target recognition formed by natural selection. However, 

Figure 2 Argonaute protein structure
Schematic domain organization of an Argonaute protein. The scheme shows how a siRNA-loaded Ar-
gonaute cleaves a perfectly complementary RNA, which becomes accessible by the catalytical center 
in the PIWI domain upon base pairing with a small RNA. Nucleotides 2–8 of the small RNA initiate the 
interaction with the cognate RNA and form the so-called “seed”, which has a highly predictive value for 
miRNA binding sites and siRNA off-targeting. The cognate mRNA is cleaved in the middle of the base 
paired sequence by the slicer activity depicted as a red pac-man.

Introduction_to_RNAi.indd   278Introduction_to_RNAi.indd   278 09.07.20   8:3409.07.20   8:34



Off-targeting

279

before addressing small RNA:target RNA complementarity, I will review the structure of 
Argonaute proteins and its implications for base pairing and target recognition. The reason 
is that structural analyses of Argonaute proteins provided important insights into the mech-
anism of how an Argonaute-loaded small RNA recognizes and binds its target.

Structural insights into target recognition by Argonaute-bound small RNAs

The one of the fundamental steps in deciphering rules governing target recognition and 
repression in RNA silencing is understanding the structure of a cognate RNA bound to 
a guide RNA loaded on an Argonaute protein. The pioneering structural analysis of full-
length Argonaute proteins has been carried out on crystalized archaeal proteins from Pyro-
coccus furiosus (Song et al., 2004), Aquifex aeolicus (Yuan et al., 2005), Archaeglobus 
fulgidus (Ma et al., 2005; Parker et al., 2005), and Thermus thermophiles (Wang et al., 
2008; Wang et al., 2009) and, subsequently on human AGO1 and AGO2 proteins (Elkayam 
et al., 2012; Faehnle et al., 2013; Nakanishi et al., 2013; Schirle et al., 2016; Schirle and 
MacRae, 2012; Schirle et al., 2015; Schirle et al., 2014).

Structural analysis of archaeal proteins revealed that Argonaute proteins are composed of 
four main domains: the central PAZ domain, the C-terminal PIWI, the N-terminal domain, 
and the MID domain between PAZ and PIWI domains. A small RNA is anchored with its 
3’ end in the PAZ domain and the 5’ end in a binding pocket between the MID domain and 
the PIWI domain (Fig. 2). Human AGO1 and AGO2 proteins also show this organization 
(Elkayam et al., 2012; Faehnle et al., 2013; Nakanishi et al., 2013; Schirle et al., 2016; 
Schirle and MacRae, 2012; Schirle et al., 2015; Schirle et al., 2014). While both proteins 
accommodate siRNAs and miRNAs, only AGO2 has the slicer activity (Liu et al., 2004; 
Meister et al., 2004). The crystal structure of human AGO2 revealed a bilobed molecule 
with a central cleft for binding guide and target RNAs (Elkayam et al., 2012; Schirle and 
MacRae, 2012; Schirle et al., 2015; Schirle et al., 2014). The crystal structures of human 
AGO1 bound to endogenous co-purified RNAs or loaded with miRNA (let-7) are very sim-
ilar to the structures of AGO2 despite the fact that AGO1 lacks the slicer activity (Faehnle 
et al., 2013; Nakanishi et al., 2013).
The key observation coming from the structural analysis is that nucleotides 2 to 6 of 

a guide RNA are positioned in an A-form conformation for base pairing with target mes-
senger RNAs (Elkayam et al., 2012; Faehnle et al., 2013; Nakanishi et al., 2013; Schirle 
et al., 2016; Schirle and MacRae, 2012; Schirle et al., 2015; Schirle et al., 2014) (Fig. 3). 
An RNA molecule can occur in many three dimensional conformations because there are 
multiple angles along which it can rotate its parts. Accordingly, initiation of base pairing 
requires proper conformation of two RNA molecules in order to initiate formation of hydro-
gen bonds between two complementary molecules. An Argonaute protein facilitates base 
pairing between a small RNA and a complementary RNA (= target recognition) by exposing 
nucleotides 2–6 arranged in a conformation needed for proper base pairing. 

Between nucleotides 6 and 7, there is a kink that may function in miRNA target recog-
nition or release of sliced RNA products. (Schirle and MacRae, 2012). Crystallization of 
loaded human AGO2 in the presence of target RNA sequences suggested a stepwise mech-
anism for interaction with cognate RNAs. First, AGO2 exposes guide nucleotides (nt) 2 to 
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5 for initial target pairing, which then promotes conformational changes that expose nt 2 
to 8 and 13 to 16 for further target recognition (Schirle et al., 2014). miRNA binding 
seem	to	lock	the	otherwise	fl	exible	AGO2	enzyme	in	a	stable	conformation	(Elkayam	
et	al.,	2012).	The	structure	of	human	Ago2	bound	to	miR-20a	implies	that	the	miRNA	is	
anchored	at	both	ends	by	the	MID	and	PAZ	domains	with	several	kinks	and	turns	along	
the binding groove (Elkayam et al., 2012). Spurious slicing of miRNA targets is avoided 
through an inhibitory coordination of one catalytic magnesium ion (Schirle et al., 2014). 
Evolutionary changes that rendered hAGO1 inactive included a mutation of a catalytic 
tetrad residue and mutations on a loop near the actives site (Faehnle et al., 2013; Nakanishi 
et al., 2013). Importantly, the PIWI domain contains tandem tryptophan-binding pockets, 
that function in recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich 
cofactors (Schirle and MacRae, 2012). Computer simulation of the structural and func-
tional dynamics of human AGO2	and	the	interaction	mechanism	with	siRNAs	confi	rmed	
that AGO2	adopts	two	conformations	such	as	“open”	and	“close”	and	the	PAZ	is	a	highly	
fl	exible	region.	(Bhandare	and	Ramaswamy,	2016).	Models	of	miRNA-loaded	Argonautes	
imply that Argonautes adopt variable conformations at distinct target sites that generate 
distorted, imperfect miRNA-target duplexes where structural distortions are better toler-
ated in solvent-exposed seed and 3’-end regions than in the central duplex region (Gan 
and Gunsalus, 2015).
Structural	analysis	also	clarifi	ed	the	effect	of	the	fi	rst	nucleotide	in	the	cognate	site,	

which	does	not	base	pair	with	the	loaded	small	RNA	because	the	fi	rst	nucleotide	of	the	
small RNA (frequently U) is buried in the 5’ end-binding pocket. Yet, it was observed that 
interaction with the cognate site is enhanced by adenosine in the position 1 of a miRNA 
binding site; the structural analysis revealed that the adenosine in the mRNA is recognized 
indirectly by AGO2 through a hydrogen-bonding network of water molecules that preferen-
tially interacts with the N6 amine on the adenine base (Schirle et al., 2015). Importantly, N6 
adenosine	methylation	blocks	recognition	of	the	adenosine,	which	might	refl	ect	a	possible	
mechanism	for	regulating	of	miRNA	binding	through	covalent	modifi	cation	of	miRNA	
binding sites (Schirle et al., 2015).

Figure 3 Crystal structures of Argonautes with bound RNAs
(A) A schematic depiction of AGO2 domain organization. (B) AGO2 with bound small RNA (in red), 
visible is the seed in A conformation (Schirle et al., 2014). (C) AGO2 loaded with a small RNA (in red) 
interacting with a target RNA (in black) (Schirle et al., 2014). Data for visualization were obtained from 
wwPDB and displayed in UCSF Chimera.
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These	data	provide	structural	foundations	of	many	features	of	target	recognition	and	can	
be used for computer simulations of miRNA-target interaction in the context of the loaded 
Argonaute structure. In fact, an algorithm MiREN, which builds and scores three-dimen-
sional models of the ternary complex formed by AGO, a miRNA and 22 nt of a target 
mRNA, can be used to assess the likelihood that an RNA molecule is the target of a given 
miRNA	(Leoni	and	Tramontano,	2016).

Importantly, they also explain features associated with different regions of miRNA and 
siRNA	sequences	that	were	identifi	ed	in	kinetic	and	bioinformatics	studies.	Taken	together,	
crystal structures of AGO2 explain the nucleotide-pairing patterns that emerged during pre-
vious studies of miRNA sequences, namely analyses of conservations of miRNA binding 
sites and biochemical analyses of target recognition, which are discussed later.

small RNA:target RNA base pairing

Sequence complementarity between a small RNA and its target RNA can be full (or almost 
full) or partial. Full complementarity is typically associated with siRNAs while partial with 
miRNAs although imperfect base pairing of siRNAs and perfect base pairing of miRNAs 
also	occur.	To	provide	a	framework	for	this	section,	I	fi	rst	review	the	full-complementarity,	
then the partial complementarity involving base pairing of 5’ small RNA nucleotides (the 
seed, Fig. 4) and then seedless (non-canonical, non-seed) interactions and their implications 
on target recognition, prediction and effective repression. Importantly, target mRNAs are as 
effi	ciently	repressed	by	microRNA-binding	sites	in	the	5	‘	uTR	as	in	the	3	‘	uTR	as	shown	
in experiments in cultured human cells (Lytle et al., 2007).

siRNA complementarity and sequence features 

RNAi	effi	ciency	correlates	well	with	the	binding	energy	of	a	siRNA	to	its	mRNA	tar-
get (Muckstein et al., 2006). While full complementarity yields a perfect duplex in which 
all	nucleotides	participate	seemingly	equally,	some	positive	correlations	were	identifi	ed	
between	positions	of	specifi	c	nucleotides	and	siRNA	suppressing	effi	ciency.	These	features	
may	refl	ect	positive	effects	on	Argonaute	loading	(strand	selection)	as	well	as	on	target	
recognition.	Analysis	of	the	effi	ciency	of	~600	siRNAs	suggested	higher	siRNA	effi	ciency	
with A/U at positions 10 and 19, a G/C at position 1, and more than three A/Us between 
positions 13 and 19, in the sense strand of the siRNA sequence (Jagla et al., 2005). Fur-
thermore,	specifi	c	residues	at	every	third	position	of	an	siRNA	infl	uence	its	effi	cient	RNAi	

Figure 4 Small RNA domains.
Small RNAs loaded onto AGO proteins can be divided into modules including the 5’ the anchor, seed 
sequence, central part, 3’ supplementary sequence, and tail (Wee et al., 2012).
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activity, which might reflect interaction with TARBP2 during formation of the RNA-in-
duced silencing complex (RISC) (Katoh and Suzuki, 2007). 
Target recognition by siRNAs is highly specific. However, discrimination of RNAi 

between two sequences differing by a single nucleotide varies according to the position of 
the mismatch. A systematic analysis of single-nucleotide mutations in target sites of a func-
tionally validated siRNA showed that the position of the mismatched base pair and the 
identity of the nucleotides forming the mismatch matter for effective silencing (Du et al., 
2005). A:C mismatches were, in addition to the G:U wobble base pairs, surprisingly well 
tolerated and target sites containing such mismatches were silenced almost as efficiently 
as with full complementarity (Du et al., 2005). G:U wobble base pairing in the central part 
of the antisense strand caused a pronounced decrease in activity, while mutations at the 5’ 
and 3’ends were well-tolerated (Holen et al., 2005). Interestingly, analysis of siRNA selec-
tivity suggested that siRNAs with G:U wobble base pairs or a mismatches located in the 
“seed” are discriminating less between perfect and mismatched target than those in which 
the mismatch was located 3’ to the seed (nucleotides 9–14); this region is critical for target 
cleavage but not siRNA binding (Schwarz et al., 2006).

miRNAs with extensive base pairing

Target recognition by miRNAs in plants is commonly thought to involve extensive base 
pairing and RNAi-like cleavage of the target (reviewed in Axtell, 2013; Wang et al., 2015). 
This notion stems from the perfect complementarity between miR171 and its SCARE-
CROW-LIKE (SCL) mRNA target, which was the first identified miRNA:mRNA inter-
action in plants (Llave et al., 2002). However, the perfect complementarity is rather an 
exception as most of the identified miRNA targets in plant cells have some imperfect base 
pairing (summarized in (Jones-Rhoades and Bartel, 2004; Jones-Rhoades et al., 2006)). 
Extensive base pairing and microRNA-directed RNAi-like cleavage exists also in animals 
but it is rare; one of the exceptional cases is HOXB8 mRNA cleavage by miR-196 (Yekta 
et al., 2004)

Mismatches to the miRNA 5’ regions strongly reduce repression but are found in several 
natural miRNA-binding sites while miRNA binding with a few mismatches to the miRNA 
3’ regions are common in plants and are often equally (or even more) effective as perfect-
ly matched sites (Liu et al., 2014b). Central mismatches interfere with repression (Liu 
et al., 2014b). However, miR398 in Arabidopsis binds 5’UTR of the blue copper-binding 
protein mRNA with a bulge of six nucleotides opposite to the 5’ region of the miRNA 
(Brousse et al., 2014). These and other studies led to consensus base pairing rules for 
a functional plant miRNA-target interaction: little tolerance for mismatches at positions 
2–13, with especially little tolerance of mismatches at positions 9–11, and more tolerance 
of mismatches at positions 1, and 14–21 (Wang et al., 2015). This is in contrast with ani-
mal miRNAs where pairing at positions 2–7 can be sufficient for a functional interaction 
(Bartel, 2009).
High sequence complementarity in mammals may be coupled with Argonaute “unload-

ing”. It was found that highly complementary target RNAs significantly accelerate release 
of the guide RNA from Ago2. Unloading can be enhanced by mismatches between the 
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target and miRNA’s 5’ end and attenuated by mismatches to miRNA’s 3’ end (De et al., 
2013).

Imperfect base pairing of miRNAs

Animal miRNAs typically base pair imperfectly with their targets. Target sites can be 
grouped into two broad categories. 5’ dominant sites have sufficient complementarity to 
the miRNA 5’ end to function with little or no support from pairing to the miRNA 3’ end. 
Indeed, sites with 3’ pairing below the random noise level are functional given a strong 
5’ end. In contrast, 3’ compensatory sites have insufficient 5’ pairing and require strong 
3’ pairing for function (Brennecke et al., 2005). Accordingly, I will separately discuss the 
canonical base pairing involving miRNA’s 5’ end (the seed) and the non-canonical (seed-
less) interactions. I will start with the canonical interaction involving base pairing of the 
seed because it is the most studied and integrates knowledge from structural studies as well 
as sequence analyses. 

Seed-involving interactions

The seed sequence concept emerged already during pioneering work on miRNA annotation 
where it became apparent that miRNAs form families sharing 5’ sequences (Lagos-Quintana 
et al., 2001; Lau et al., 2001; Lee and Ambros, 2001). Then it became clear that the seed 
sequence is a strong predictor for miRNA targets (Lewis et al., 2005; Sood et al., 2006) as 
well as for siRNA off-targeting (Jackson et al., 2006b). An analysis of more than 18,000 
high-confidence miRNA-mRNA interactions suggested that binding of most miRNAs 
includes the 5’ seed region, while around 60% of seed interactions contained bulged or 
mismatched nucleotides (Helwak et al., 2013). The molecular mechanism of miRNA and 
target recognition (reviewed in Bartel, 2009) provides an explanation for the significance of 
the seed sequence and, while there are also small RNA:target mRNA interactions that do not 
involve the seed sequence, the concept of the seed is sufficient to explain that any AGO-load-
ed small RNA in any cell type has the potential to interact with hundreds and thousands of 
different mRNAs. In fact the estimates for human mRNAs targeted by miRNAs are between 
30 and >60% (Friedman et al., 2009; Lewis et al., 2005).
The seed region is generally defined as a 7nt region mapping to positions 2–8 and it 

strongly confers specificities of animal miRNAs to their mRNA targets. There is a high 
functional cost of even single nucleotide changes within seed regions, which is consistent 
with their high sequence conservation among miRNA families both within and between 
species and suggests processes that may underlie the evolution of miRNA regulatory con-
trol (Hill et al., 2014). The target specificity determined by the seed has evolutionary and 
biological implications because single nucleotide polymorphisms in canonical miRNA 
binding sites would affect miRNA-mediated regulations, a notion supported also by exper-
imental data (Afonso-Grunz and Muller, 2015; Vosa et al., 2015).
The canonical 7nt seed can be divided into several types (Ellwanger et al., 2011). More 

specifically, the core seeds have been described as a 6-mer (bases 2–7), 7-mer (“7-mer-A1” 
being bases 1–7, and “7-mer-m8” being bases 2–8), and 8-mer (bases 1–8); sometimes the 

Introduction_to_RNAi.indd   283Introduction_to_RNAi.indd   283 09.07.20   8:3409.07.20   8:34



Off-targeting

284

7-mer-A1 and 8-mer seeds are required to have an adenine, ‘A’, as the first nucleotide types 
(Bartel, 2009; Ellwanger et al., 2011). 

Longer seeds, i.e. seeds of 7 or 8 nucleotides in length are more evolutionarily con-
served than shorter ones (Ellwanger et al., 2011). Longer seeds confer higher specificity and 
repression. It was reported that the extent of the seed match has a strong impact on resulting 
target repression: single 8 mer seed match mediates down-regulation comparable to two 
7 mer seed matches (Nielsen et al., 2007). However, others did not observe a linear relation-
ship between seed length and miRNA expression dysregulation, which does not support the 
hypothesis the seed region length alone influences mRNA repression. (Mullany et al., 2016)
In any case, the majority of functional target sites seems formed by less specific seeds 

of only 6 nt indicating a crucial biological role of this type (Ellwanger et al., 2011). In fact, 
pairing at positions 2–7 is sufficient for a functional interaction of animal miRNAs with 
their targets (Bartel, 2009). In contrast, seed pairing does not appear to be critical for land 
plant miRNAs (Liu et al., 2014b). 
The minimal requirement for miRNA:mRNA interactions in animals explains the large 

numbers of targets of animal miRNAs and the fact that, the majority of functional sites is 
poorly detected by common prediction methods (Ellwanger et al., 2011). While the initial 
studies suggested that average miRNAs have approximately 100 target sites (Brennecke 
et al., 2005), subsequent bioinformatics and experimental identification of miRNA targets 
suggest even higher number of target sites.
There are several targeting determinants that enhance seed match-associated mRNA 

repression, including the presence of adenosine opposite miRNA base 1 (this function-
ality is explained by Argonaute protein structure (Schirle et al., 2015)) and of adenosine 
or uridine opposite miRNA base 9, independent of complementarity to the siRNA/miR-
NA (Lewis et al., 2005; Nielsen et al., 2007). Furthermore, seed-based canonical target 
recognition was dependent on the GC content of the miRNA seed – low GC content in 
the seed was coupled with non-canonical target recognition. (Wang, 2014). Additional 
reported determinants beyond seed pairing include: AU-rich nucleotide composition near 
the site, proximity to sites for co-expressed miRNAs (which leads to cooperative action), 
proximity to residues pairing to miRNA nucleotides 13–16, positioning within the 3’UTR 
at least 15 nt from the stop codon, and positioning away from the center of long UTRs 
(Grimson et al., 2007).

Non-canonical – non-seed interactions

There is large variety of miRNA-target duplex structures, which include seedless interac-
tions (reviewed in Cipolla, 2014; Seok et al., 2016a). The existence of seedless interactions 
explains reports that perfect seed pairing is not a generally reliable predictor for miRNA-tar-
get interactions (Didiano and Hobert, 2006). Despite attempts to classify non-canonical 
interactions (Xu et al., 2014b) and tertiary structure-based modelling of miRNA interac-
tions (Gan and Gunsalus, 2015), bioinformatic prediction of non-canonical interactions is 
far from ideal. A solution is integration of bioinformatic target prediction with biochemi-
cally identified miRNA binding sites. Such analyses suggested that most miRNA targets 
were of a non-canonical type, i.e. not involving perfect complementarity in the seed region 
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(Khorshid et al., 2013; Wang, 2014). Importantly, analysis of AGO-associated mRNAs that 
lack seed complementarity with miRNAs suggested that AGO might have its own binding 
preference within target mRNAs, independent of guide miRNAs (Li et al., 2014). A structur-
ally accessible and evolutionarily conserved region (~10 nucleotides in length) was identi-
fied that alone can accurately predict AGO-mRNA associations, independent of the presence 
of miRNA binding sites (Li et al., 2014). In any case, the impact of non-canonical targeting 
regarding target downregulation is not fully resolved (Khorshid et al., 2013; Martin et al., 
2014; Wang, 2014).

Other important factors influencing target recognition and repression

It is important to recognize that sequence complementarity between a small RNA and its 
putative target is not sufficient to make any prediction about silencing of the target because 
there are other important factors at play. The two most important are discussed in the next 
two sections are (I) the binding site accessibility and (II) stoichiometry between a small 
RNA ant its target (or binding kinetics). Other factors, which might contribute to silencing 
in a context-dependent manner are, for example, alternative polyadenylation and arrange-
ment of miRNA binding sites in 3’UTRs might cause different effects in different cells 
(Hon and Zhang, 2007; Majoros and Ohler, 2007; Nam et al., 2014a). In particular, there 
was a strong preference reported for targets to be located in close vicinity of the stop codon 
and the polyadenylation sites. (Majoros and Ohler, 2007).

Binding site accessibility

Mere sequence complementarity is not a sufficient predictor whether base pairing will 
occur in vivo. RNA molecules always form secondary structures and, in the cellular context, 
a number of proteins interacts with RNA molecules. Accordingly, secondary structures or 
RNA binding proteins may prevent base pairing of two complementary sequences. The 
issue of sequence accessibility was recognized during early RNAi experiments with sto-
chastic knockdown efficiency. When searching for factors influencing knock-down efficien-
cy, attention turned to the local RNA structure at siRNA target sites and it was demonstrated 
that local RNA target structure is an important factor for siRNA efficacy (Schubert et al., 
2005). Accordingly, siRNA design tools started to accommodate not only properties of 
siRNAs but also properties of the target site because it strongly increased efficiency of 
designed siRNAs (Heale et al., 2005, 2006; Shao et al., 2007; Tafer et al., 2008).

Systematic investigation of siRNA:target RNA interactions and the effect of local sec-
ondary structures provided also insights into the molecular mechanism of target recognition. 
It was shown in vitro and in vivo, that the accessibility of the target site correlates directly 
with the efficiency of cleavage, demonstrating that RISC is not unfolding structured RNA 
(Ameres et al., 2007). During target recognition, RISC transiently contacts single-stranded 
RNA nonspecifically and promotes siRNA-target RNA annealing (Ameres et al., 2007).The 
seed of Argonaute-associated siRNA creates a thermodynamic threshold that determines the 
stable association of RISC and the target RNA (Ameres et al., 2007). 
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The same principles apparently apply for miRNA-mediated repression (Long et al., 
2007; Xu et al., 2014b). Mutations diminishing target accessibility substantially reduce 
microRNA-mediated translational repression, with effects comparable to those of mutations 
that disrupt sequence complementarity (Kertesz et al., 2007).

small RNA:target RNA stoichiometry and binding kinetics

The second critical factor for target repression is stoichiometry between a small RNA ant 
its target. This is especially important for the miRNA-like type of target repression because 
a miRNA must remain associated with its target RNA in order to induce its translational 
repression and degradation. Thus, suppression of a specific mRNA by a miRNA requires 
enough miRNA molecules that would assure enough interactions with binding sites in that 
particular RNA while these binding sites essentially compete with all binding sites for that 
miRNA in the transcriptome.

Biochemical analyses of stoichiometry and kinetics 

Kinetic data should be taken as a biochemical range for any hypotheses concerning target 
recognition and biological effects of small RNAs in the context of loaded RISC. Among 
these is a detailed kinetic study of Drosophila and mouse AGO2 RISCs (Wee et al., 2012).

It was shown that siRNA-programmed RISC is a classical Michaelis-Menten enzyme in 
the presence of ATP (Haley and Zamore, 2004). In the absence of ATP, the rate of multiple 
rounds of catalysis is limited by release of the cleaved products (Haley and Zamore, 2004). 
Kinetic analysis suggests that different regions of the siRNA play distinct roles in the cycle 
of target recognition, cleavage, and product release (Haley and Zamore, 2004). Later, it 
was shown that Argonaute divides its RNA guide into domains with distinct functions 
and RNA-binding properties. (Wee et al., 2012) According to this analysis, small RNAs 
loaded onto AGO proteins are actually composed of five distinct modules the anchor, seed, 
central, 3’ supplementary, and tail (Fig. 4) (Wee et al., 2012). Bases near the siRNA 5’ end 
disproportionately contribute to target RNA-binding energy, whereas base pairs formed by 
the central and 3’ regions of the siRNA provide a helical geometry required for catalysis 
(Haley and Zamore, 2004). Mouse AGO2, which mainly mediates miRNA-directed repres-
sion in vivo, dissociates rapidly and with similar rates for fully paired and seed-matched 
targets (Wee et al., 2012). An important conclusion from this study is that low-abundant 
miRNAs are unlikely to contribute much biologically meaningful regulation because they 
are present at a concentration less than their KD for seed-matching targets, which are in 
a picomolar range (Wee et al., 2012). Another study characterized siRNA binding, target 
RNA recognition, sequence-specific cleavage and product release by recombinant human 
Ago 2 (hAgo2). This yielded a minimal mechanistic model describing fundamental steps 
during RNAi, which is consistent with a “two-state” model of RISC action (Deerberg et al., 
2013). Finally, it was found that Mg2+ concentration, influences AGO2 structural flexibility 
and is important for its catalytic/functional activity, with low [Mg2+] favoring greater Ago2 
flexibility (e.g., greater entropy) and less miRNA/mRNA duplex stability, thus favoring 
slicing(Nam et al., 2014b).
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Importantly, it seems that miRNA:mRNA stoichiometry cannot be simply determined by 
quantifying RNAs. Quantification of Argonaute-associated endogenous miRNAs or exoge-
nous siRNAs in cultured cells suggested that only a small proportion (even <10%) of such 
small RNAs is loaded on Argonautes (Janas et al., 2012; Stalder et al., 2013). Furthermore, 
a substantial percentage of the miRNA pool associated with mRNAs without Argonautes 
(Janas et al., 2012; Stalder et al., 2013). It was also found that endogenous human miRNAs 
vary widely, by >100-fold, in their level of RISC association and show that the level of Ago 
binding is a better indicator of inhibitory potential than is the total level of miRNA expres-
sion (Flores et al., 2014). Together, these data indicate that the level of RISC association 
of a given endogenous miRNA is regulated by the available RNA targetome and predicts 
miRNA function. (Flores et al., 2014).

Small RNA:target RNA binding single-molecule analysis

Recent advances in single-molecule analysis brought also single- molecule data about 
RISC:target interaction, which is consistent with other biochemical data and the two state 
model for Argonaute action (Li and Zhang, 2012; Zander et al., 2014).
Loaded AGO2 utilizes short RNAs as specificity determinants with thermodynamic and 

kinetic properties more typical of RNA-binding proteins. A small RNA loaded on Argo-
naute does not follows rules by which free oligonucleotides find, bind, and dissociate from 
complementary nucleic acid sequences (Salomon et al., 2015). This is conceivable given 
the fixed “A” conformation of the seed of a small RNA loaded on an Argonaute protein.
Single-molecule fluorescence experiments using a minimal RISC (a small RNA and 

AGO2) showed that target binding starts at the seed region of the guide RNA (Chandra-
doss et al., 2015; Jo et al., 2015a; Jo et al., 2015b). AGO2 initially scans for target sites 
with complementarity to nucleotides 2–4 of the miRNA. This initial transient interaction 
propagates into a stable association when target complementarity extends to nucleotides 
2–8. This stepwise recognition process is coupled to lateral diffusion of AGO2 along the 
target RNA, which promotes the target search by enhancing the retention of AGO2 on the 
RNA (Chandradoss et al., 2015). Stable RISC binding is thus efficiently established with 
the seed match only, providing a potential explanation for the seed-match rule of miRNA 
target selection (Chandradoss et al., 2015; Jo et al., 2015a; Jo et al., 2015b). Mouse AGO2 
binds tighter to miRNA targets than its RNAi cleavage product, even though the cleaved 
product contains more base pairs (Salomon et al., 2015). Annealing between miRNA and 
its target with poor seed match proceeds in a stepwise way, which is in accordance with the 
increase in the number of conformational states of miRNA-target duplex accommodated 
by the miRISC, suggesting the structural plasticity of human miRISC to conciliate the mis-
matches in seed region (Li and Zhang, 2012)
Target cleavage required extensive sequence complementarity and accelerated core-

RISC dissociation for recycling (Jo et al., 2015a) and sensitively depended on the sequence 
(Jo et al., 2015b). While RISC generally releases the 5’ cleavage fragment from the guide 
3’ supplementary region first and then the 3’ fragment from the seed region. This order can 
be reversed by extreme stabilization of the 3’ supplementary region or mismatches in the 
seed region. Therefore, the release order of the two cleavage fragments is influenced by the 
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stability in each region, in contrast to the unidirectional base pairing propagation from the 
seed to the 3’ supplementary region upon target recognition.(Yao et al., 2015).

Off-targeting – causes and remedies

Off-targeting effects surfaced as a major issue in RNAi experiments when the effects of 
RNAi treatment were systematically analyzed (Fedorov et al., 2006; Jackson et al., 2003; 
Lin et al., 2005; Scacheri et al., 2004; Snove and Holen, 2004). One of the most revealing 
data came from mammalian cells transfected with different siRNAs targeting the same gene, 
which were systematically analyzed using microarrays (Jackson et al., 2003). Using 16 dif-
ferent siRNAs against IGF1R and 8 different siRNAs against MAPK14, strong siRNA-spe-
cific expression changes were found in transfected cells with only a few genes regulated 
in common by siRNAs targeting the same gene. Off-targeting effects were also found also 
in other animal models (Ma et al., 2006) and plants (Xu et al., 2006). In fact, off-targeting 
causes a significant bias in high-throughput RNAi screens (Ma et al., 2006)

Off-targeting is concentration dependent, it could be attributed to both siRNA strands, 
and a portion of off-targeting appears to be caused by partial complementarity between 
a siRNA and its target, reminiscent of the 5’ seed regions of miRNAs (Aleman et al., 2007; 
Birmingham et al., 2006; Jackson et al., 2003; Jackson et al., 2006b; Qiu et al., 2007). In 
some cases of off-targeting, no correlation between predicted and actual off-target effects 
was reported (Hanning et al., 2013). However, this probably reflects problems of accurate 
miRNA target prediction rather than the absence of miRNA-like off-targeting. In any case, 
a recent systematic analysis of off-targeting effects confirmed that strength of base pairing 
in the siRNA seed region is the primary factor determining the efficiency of off-target 
silencing (Kamola et al., 2015)
The main cause of off-targeting is miRNA-like behavior of siRNAs. It was experimen-

tally demonstrated in mammalian cells that siRNAs can function as miRNAs (Doench 
et al., 2003) and that siRNAs imperfectly matching endogenous mRNAs repress transla-
tion (Martin and Caplen, 2006; Saxena et al., 2003) suggesting that miRNAs and siRNAs 
use similar if not identical, mechanisms for target repression (Zeng et al., 2003). The 
current view of mammalian RNAi is that experimental RNAi induced with a siRNA or 
shRNA hijacks the molecular machinery dedicated to the miRNA pathway (reviewed in 
Svoboda, 2014). Consequently, some degree of off-targeting likely occurs in every RNAi 
experiment.

Importantly, experimental RNAi can also cause artifacts through saturation of the  
miRNA pathway, which essentially suppresses normal miRNA function (Khan et al., 2009). 
Exportin 5 seems to be a bottleneck for an effective RNA silencing (Lu and Cullen, 2004; Yi 
et al., 2005). Indeed, lethal non-specific effects observed with type I shRNAs delivered to 
the mouse liver by a viral vector were linked to the saturation of Exportin 5 (Grimm et al., 
2006). Inhibition of Exportin 5 could also provide an explanation to early lethality defects 
observed during generation transgenic mice carrying class I shRNA expression cassette 
(Cao et al., 2005).
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Suppression and by-passing off-targeting

Off-targeting has been a recurring problem with RNAi experiments, especially in RNAi 
screens searching for novel regulators. Off-targeting was frequently causing false-positive 
results in such screens although this issue has been partially remedied (reviewed in Mohr 
et al., 2014; Petri and Meister, 2013). Below, I list options for dealing with off-targeting, 
which emerged from the literature review.

Appropriate experimental design

This is actually a simple solution, which emerged from initial experiments detecting off-tar-
geting (reviewed in(Svoboda, 2007), which suggested that off-targeting operates through 
miRNA-like behavior of siRNAs and is concentration-dependent. Thus, a proper practice 
is to use the minimal effective siRNA concentration. Importantly, this step strongly reduces 
off-targeting but it does not eliminate it as the targeting siRNA is still present and functions 
as a miRNA (Jackson et al., 2003; Jackson et al., 2006b).

Pools of siRNA

An extension of a strategy to lower siRNA concentration to the point that off-targeting 
effects in the model system become very low or even undetectable. If a pool of 10 siRNAs 
is used at the same total siRNA concentration, a single siRNA is having ten times lower 
concentration and causes lower off-targeting effects. One can produce an siRNA pool by 
an enzymatic digest of long dsRNA with Dicer or simply purchase a number of siRNAs 
targeting a single mRNA. In fact, some companies offer pre-made siRNA pools. A unique 
type of siRNA pools are siPools, which are produced by in vitro transcription of tandemly 
arrayed siRNA sequences (Hannus et al., 2014)

Bioinformatics filtering

Since the siRNA seed region is strongly associated with off-target silencing (Jackson et al., 
2006b; Kamola et al., 2015), it could be used to filter RNAi screening data to reduce of 
off-target rates (Yilmazel et al., 2014; Zhong et al., 2014). In fact, revised analysis of RNAi 
screens could identify functionally relevant genes suppressed by off-targeting (Adams 
et al., 2015; Lin et al., 2007; Singh et al., 2015).

Better small RNA design

Understanding of the molecular mechanism of RNAi is also reflected in constantly improv-
ing siRNA design which aims at providing siRNAs specifically silencing a gene of interest 
with little or no off-target effects and no cell toxicity (reviewed in Ahmed et al., 2015; 
Tafer, 2014). Improved siRNA design can reduce off-targeting in several ways. First, siR-
NAs designed for efficient strand selection would have reduced off-targeting caused by 
AGO-loaded passenger strand. It was also found that increased siRNA duplex stability 
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correlates with reduced off-target and elevated on-target effects (Petri et al., 2011). This 
can be, for example, influenced by the seed binding energy and seed composition, which 
would determine the pool of potential binding sites in the transcriptome and the difference 
between on-target and off-target RNAs (Das et al., 2013a; Das et al., 2013b). Adaptations 
of siRNA/shRNA design to reduce off-target effects include weak base pairing in both seed 
and 3 ‘ regions (Gu et al., 2014) and evaluation of potential cross-hybridization candidates 
(Anderson et al., 2008; Yamada and Morishita, 2005). Reduced off-targeting features were 
subsequently integrated into siRNA design tools such as siDirect (Naito and Ui-Tei, 2013; 
Naito et al., 2009).

Mismatch introduction

Mismatch introduction into siRNA at the positions 2 of the base pairing also weakens 
off-targeting (Dua et al., 2011; Li et al., 2015)

Chemical modifications of small RNAs

The discovery that off-targeting involves miRNA-like behavior of siRNAs prompted 
research on chemical modifications that would reduce miRNA-like behavior while not 
interfering with desired RNAi effects (Chiu and Rana, 2003). A thorough review of the 
chemical modifications is beyond the scope of this report but can be found elsewhere 
(Engels, 2013; Nolte et al., 2013; Peacock et al., 2011; Snove and Rossi, 2006). There are 
two common strategies, to reduce off-targeting – (I) Chemical modifications on the passen-
ger strand preventing its loading, hence eliminating off-targeting caused by the passenger 
strand (Chen et al., 2008; Snead et al., 2013) and (II) Chemical modifications in the seed 
region, which interfere with miRNA-like target recognition but do not prevent specific 
RNAi targeting. Different chemistry was used for chemical modification of siRNAs with 
reduced off-targeting effects including unlocked nucleic acid (UNA) modification (Snead 
et al., 2013), locked nucleic acid (LNA) modification (Fluiter et al., 2009), 2’-O-methyl 
ribosyl (Chen et al., 2008; Jackson et al., 2006a), or abasic nucleotides (Seok et al., 2016b).
Position of the modification on the guiding strand is important for reduced off-target-

ing. While it is usually involving seed, the modified nucleotide may vary. For example, 
2’-O-methyl ribosyl substitution at position 2 in the guide strand reduces most off-target 
effects caused by complementarity to the seed region of the siRNA guide strand (Jackson 
et al., 2006a). At the same time, an abasic nucleotide at the position 6 in the guide strand 
also eliminates miRNA-like off-target repression but preserves near-perfect on-target activ-
ity (80–100%) (Seok et al., 2016b).

Discerning specific RNAi phenotypes from off-targeting effects 

While strategies for suppressing off-targeting effects clearly reduce experimental artifacts, 
off-targeting should be seen as a type of noise in RNAi experiments that cannot be com-
pletely eliminated. Assuming that some off-targeting occurs in every RNAi experiment, 
one can focus on a more important issue: how to identify biologically relevant effects 
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of off-targeting (phenotype) and separate them from the specific RNAi effect caused by 
knock-down of the desired gene. The idea is simple – while one can try to minimize off-tar-
geting effects, the risk cannot be completely eliminated. Thus, it is equally important to use 
an appropriate experimental design, which allows to distinguish between off-targeting and 
specific RNAi effects. The two possible strategies were proposed a decade ago and were 
named “the two R’s”: rescue and redundancy (Echeverri et al., 2006).
The principle of the rescue strategy is expressing an RNAi-resistant version of the targeted 

gene. If a phenotype is caused by the gene knock-down, it should be rescued. It can be either 
mutated such that the base pairing with a short RNA is eliminated. One can, for example 
target 3’UTR and use a different one in the rescue construct or mutate/degenerate appropriate 
codon positions if targeting CDS. This strategy is powerful because it accepts all effects in 
an RNAi experiment and tests the contribution of the specific gene knock-down. For recent 
information on design of the rescue system see, for example, (Kumar, 2015)
The second strategy is based on phenotype redundancy. Two or more RNAi triggers 

with different sequences (i.e. specific siRNAs or shRNAs) producing the same phenotype 
decrease the probability that a phenotype would be caused by off-targeting. However, some 
common phenotypes (e.g. slower growth, apoptosis, and developmental arrest) may be 
a frequent off-targeting phenotype induced by different RNAi triggers, so the redundancy 
strategy would be less powerful than the rescue strategy described above. However, for 
some purposes (e.g. high-throughput RNAi screening), it might be easier to implement the 
redundancy strategy as a control for off-targeting than the rescue strategy.
Importantly, “non-targeting” controls (e.g. siRNAs with a random sequence or targeting 

non-expressed genes such as EGFP or luciferase) cannot be used controls for off-targeting 
for reasons mentioned above. It is a frequent misconception ignoring the fact that off-tar-
geting is individual to each RNAi trigger because it is sequence-specific. “Non-targeting” 
siRNAs or shRNAs RNAs may serve as controls for the sequence-independent effects, such 
as interferon response and saturation of RNA silencing with an excess of exogenous short 
RNAs. If a small RNA is needed as a control for off-targeting, one may only use a pool of 
scrambled small RNAs, which would have highly diluted off-targeting effects.

Target identification – in silico & experimental approaches

Target identification is a common issue in the small RNA field (reviewed for example in 
Pasquinelli, 2012; Tarang and Weston, 2014). Target identification can utilize bioinformatic 
analysis, experimental analysis or their combination. Briefly, bioinformatic analysis primar-
ily implements the canonical seed-match model, evolutionary conservation, and binding 
energy, which are often complemented by neural networks trained on sets of experimen-
tal data in order to optimize filtering parameters. Some bioinformatics tools also consid-
er non-canonical binding sites. Importantly, a mere presence of a miRNA binding site is 
insufficient for predicting target regulation as additional factors influence the regulation, 
including the above-mentioned accessibility of a binding site and stoichiometry between 
a miRNA and its targets. In the end, experimental verification of microRNA targets is essen-
tial, prediction alone is insufficient (Law et al., 2013).
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Target prediction in silico

Identification of many miRNAs in model organisms prompted development of bioinfor-
matics tools for prediction of targeted mRNAs (Enright et al., 2003; Grun et al., 2005; 
John et al., 2004; Kiriakidou et al., 2004; Krek et al., 2005; Lewis et al., 2003; Stark et al., 
2003). A number of bioinformatics tools emerged for miRNA analysis and target prediction 
(a comprehensive overview of all miRNA analysis tools is provided at https://tools4mirs 
.org/, for recent reviews on bioinformatic target prediction see, for example, (Elton and 
Yalowich, 2015; Lagana, 2015; Li and Zhang, 2015; Ristevski, 2015). A searchable data-
base of systematically annotated miRNA tools can be found here: https://tools4mirs.org 
/software/target_prediction/.

Importantly, accurate bioinformatic prediction of miRNA-mediated repression is still 
problematic. This was shown, for example, during experiments with systematically gen-
erated artificial miRNAs targeting a desired gene (Arroyo et al., 2014). It turned out that 
seed-based artificial miRNA design was highly inefficient, as the majority of miRNAs 
with even perfect seed matches did not repress either target. Moreover, commonly used 
target prediction programs had problems to discriminate effective artificial miRNAs from 
ineffective ones, indicating that current algorithms do not fully accommodate important 
miRNA features allowing for designing artificial miRNAs (Arroyo et al., 2014). Another 
unresolved issue is reliable prediction of non-canonical (non-seed) miRNA binding sites as 
most algorithms are based on detection of seed-based miRNA binding sites.

Common target prediction tools for animal miRNAs

Among the prediction tools, several can be highlighted. These include Targetscan, miRan-
da, DIANA-microT, PicTAR, whose predictions were integrated into the miRBase, the 
central annotation database for miRNAs (Kozomara and Griffiths-Jones, 2014) and were 
also repeatedly evaluated in benchmark studies (Alexiou et al., 2009; Ding et al., 2012; 
Majoros et al., 2013; Peterson et al., 2014; Xu et al., 2014a). I add to these also MIRZA as 
it is one of the most recent algorithms, which in many aspects outperforms the other ones 
(Gumienny and Zavolan, 2015).

Targetscan (http://www.targetscan.org/vert_71/)

Targetscan is one of the most popular miRNA target prediction tools and its predictions 
are integrated in the miRBase (Kozomara and Griffiths-Jones, 2014). It is being devel-
oped in David Bartel’s laboratory as a tool for miRNA target prediction for over a dec-
ade (Lewis et al., 2005; Lewis et al., 2003). It predicts biological targets of miRNAs by 
searching for the presence of conserved 8mer, 7mer, and 6mer sites that match the seed 
region of each miRNA but there is also an optional search for poorly conserved sites. Its 
development included also scoring for binding sites with mismatches in the seed region 
that are compensated by 3’ end pairing (Friedman et al., 2009) an improved quantitative 
model of canonical targeting (Agarwal et al., 2015) and addition other features. The cur-
rent version considers a site type and fourteen other features and, according to authors, 
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it outperforms other tools and matches high-throughput in vivo crosslinking approaches 
(Agarwal et al., 2015).

DIANA-MicroT (http://diana.imis.athena-innovation.gr/DianaTools/index.php)

DIANA-MicroT target prediction tools are another popular source for miRNA target predic-
tion whose predictions are integrated with miRBase (Kozomara and Griffiths-Jones, 2014). 
DIANA-MicroT tools are being developed in Artemis Hatzigeorgiou’s laboratory for over 
a decade (Alexiou et al., 2010; Kiriakidou et al., 2004; Maragkakis et al., 2009; Maragkakis 
et al., 2011; Megraw et al., 2007; Paraskevopoulou et al., 2013a; Paraskevopoulou et al., 
2013b; Paraskevopoulou et al., 2016; Reczko et al., 2011; Sethupathy et al., 2006; Vergoulis 
et al., 2012; Vlachos et al., 2012). MicroT is specifically trained on a positive and a negative 
set of miRNA binding sites located in 3’-UTR and CDS regions. DIANA Tools offer target 
prediction algorithms (microT v4 and microT-CDS), databases of experimentally verified 
miRNA targets on coding and non-coding RNAs (TarBase v7.0 and LncBase), and tools for 
assessment of biological impacts of miRNAs (mirPath). In addition, the Web Server (v5.0) 
supports workflows enabling to perform complex functional miRNA analyses.

Pictar (http://www.pictar.org/)

Pictar is an algorithm for the identification of microRNA targets from Nikolaus Rajew-
sky’s laboratory (Grun et al., 2005; Krek et al., 2005). Its predictions are also integrated 
with miRBase (Kozomara and Griffiths-Jones, 2014). Pictar offers for searching of targets 
of annotated miRNAs or mRNAs. Pictar predicts targets based on complementarity in a 7nt 
seed region, takes into account conservation and uses hidden Markov model approach to 
produce the final score. In contrast to Targetscan and DIANA-MicroT, Pictar has not been 
intensely developed. While it represents one of the older and simpler target prediction algo-
rithms it is quite accurate prediction tool (Alexiou et al., 2009).

miRanda at microRNA.org – Targets and Expression (http://www.microrna.org/)

miRanda belongs among the pioneering target prediction algorithms (Enright et al., 2003; 
John et al., 2004). Its latest version miRanda-miRSVR (Betel et al., 2010; Betel et al., 
2008) is integrated into target predictions at http://www.microrna.org where one can search 
predictions for annotated miRNAs in the main experimental model organisms. These pre-
dictions are also integrated with miRBase (Kozomara and Griffiths-Jones, 2014). miRanda 
analyses miRNA sequence complementarity with 3’UTRs and evaluates binding energy, 
conservation and binding site position in the 3’UTR. miRanda-miRSVR also identifies 
non-canonical and non-conserved sites (Betel et al., 2010; Betel et al., 2008).

MIRZA & MIRZA-G (http://www.sib.swiss/zavolan-mihaela/services)

These tools are being developed in Mihaela Zavolan’s lab and can be used for the prediction 
of miRNA targets and siRNA off-targets on a genome-wide scale. MIRZA is biophysical 
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model of microRNA-target interaction that enables accurate identification of microRNA 
targets, particularly from Argonaute-CLIP data (Khorshid et al., 2013). MIRZA-G employs 
both the MIRZA biophysical model as well as other features to predict microRNA tar-
get sites genome-wide (Gumienny and Zavolan, 2015). MIRZA-G performed better on 
a benchmark test than Targetscan Context+ and DIANA-microT-v3 (Gumienny and Zavol-
an, 2015) making it a good choice for predicting canonical and non-canonical miRNA target 
sites as well as siRNA off-target sites. 

Target prediction for plant miRNAs

Target prediction for plant miRNAs differs from prediction of miRNA targets in animals 
because of frequent highly complementary targets of plant miRNAs. A pioneering study 
of miRNA-mediated repression in plants revealed near-perfect complementarity between 
Arabidopsis miRNAs and their targets suggests suggesting that many plant miRNAs act 
similarly to siRNAs and direct mRNA cleavage (Rhoades et al., 2002). Consequently, miR-
NA target prediction in plants (for a recent review, see, for example, (Mishra et al., 2015)) 
is routinely performed as a relatively simple search for highly complementary mRNA 
sequences without a specialized target prediction algorithm. For example, Singh et al. (Sin-
gh et al., 2016) used for miRNA target prediction in ginger (Zingiber officinale) the follow-
ing three simple criteria, which could be written into a simple search script: 

1)	not more than four mismatches allowed between predicted mRNAs and target gene.
2)	no mismatches allowed for 10th and 11th positions of complementary site (a cleavage 

site).
3)	maximum 4 GU pair was allowed in the complimentary alignment.

Some authors even use for searching sequence similarity between a plant miRNA and 
mRNAs the Basic Local Alignment Search Tool algorithm (Huang et al., 2014a). A specif-
ic plant-miRNA-target analysis server is psRNATarget: a plant small RNA target analysis 
server (Dai and Zhao, 2011), which can be used not only for miRNAs but also for other plant 
small RNA analysis (Guzman et al., 2013; Huang et al., 2014b; Kumar et al., 2014). Other 
authors use general target prediction algorithms such as Miranda or RNAhybrid either alone 
(Shweta and Khan, 2014) or in more complex arrangements (Kurubanjerdjit et al., 2013).

A systematic evaluation of tools to predict targets of miRNAs and siRNAs in plants was 
provided by Srivastava et al. who compared 11 computational tools in identifying genome-
wide targets in Arabidopsis and other plants. Among them, Targetfinder was the most effi-
cient in predicting ‘true-positive’ targets in Arabidopsis miRNA-mRNA interactions but 
performed much worse when analyzing data from non-Arabidopsis species. (Srivastava 
et al., 2014). Furthermore, combination of Targetfinder and psRNATarget provides high true 
positive coverage, whereas the intersection of psRNATarget and Tapirhybrid outputs deliver 
highly ‘precise’ predictions. All evaluated tools yielded a large number of ‘false negative’ 
predictions in non-Arabidopsis datasets (Srivastava et al., 2014).
Targets of plant miRNAs, that induce sequence-specific RNAi-like cleavage, can be fur-

ther identified by employing degradome sequencing, a method determining RNA termini. 
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Thus, in mRNAs cleaved by a miRNA after its 10th nucleotide, one would observe align-
ment of RNA termini matching the predicted miRNA binding site. This strategy comple-
menting bioinformatics description is further described in the following section.

Common experimental approaches for identification of targets  
of small RNAs

Bioinformatic target prediction is probabilistic. In other words, bioinformatics predic-
tions identifies a set of putative small RNA targets, which fit certain set of criteria and are 
assigned a certain probability of being targeted by a specific small RNA. At the same time, 
each prediction yields positive and false negative results. A common problem in bioinfor-
matic prediction is reliable prediction of non-canonical targets, whose recognition does 
not involve a complete seed match and, to a lesser extent, prediction of targets recognized 
through non-conserved binding sites. It is common that researchers aiming at target identi-
fication start with bioinformatics prediction and become entangled in the net of prediction 
tools and generate partially overlapping lists of predicted targets. This strategy is inherently 
biased towards canonical conserved miRNA binding sites and the highest scoring targets 
will have more than one such a site. However, this strategy is problematic for identification 
of the full set of targets.
Accordingly, more reliable identification of small RNA targets usually combines bio-

informatics and experimental approaches. (Chen et al., 2015; Tarang and Weston, 2014; 
Thomson et al., 2011).

High throughput expression analysis

High throughput analysis (expression arrays, RNA sequencing or high-throughput proteom-
ics) can complement target prediction in different ways. One can manipulate the miRNA 
pathway by various means (reviewed, for example in Svoboda, 2015), such as miRNA over-
expression, knock-out or inhibition by complementary oligonucleotides (so-called antag-
omirs) and then identify correlations between target prediction and their actual behavior 
(e.g. Krutzfeldt et al., 2005; Lim et al., 2005; Sood et al., 2006). However, these strategies 
yield only correlative results, i.e. do not directly detect smallRNA:targetRNA interaction.

Small RNA capture strategies

These strategies can be used to identify either mRNAs bound by a small RNA or small 
RNAs bound to a selected mRNA. Identification of targets of a small RNA employs deliv-
ery of a tagged small RNA (e.g. biotinylated miRNA) followed by an affinity capture to 
co-purify targets (Baigude et al., 2012; Orom and Lund, 2007; Tan and Lieberman, 2016). 
These strategies are prone to artifacts because delivery of biotinylated small RNAs can cre-
ate nonphysiological conditions and affinity purification could be influenced by the binding 
site context. 
Identification of small RNAs bound to a selected mRNA (e.g. miR-CATCH or miRIP meth-

ods) employs capture of a selected RNA with associated small RNA using a complementary 
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oligonucleotide, which can be used for affinity capture (e.g. a biotinylated complementary 
oligonucleotide or a complementary oligonucleotide covalently bound to a magnetic bead) 
(Su et al., 2015; Vencken et al., 2015). This strategy is suitable for detailed analysis of 
miRNA-mediated regulation of a specific mRNA but not for a transcriptome-wide target 
assessment. One variant employs a tested mRNA fused with a common sequence (EGFP) 
allowing for using the same set of biotinylated DNA anti-sense oligonucleotides for analyz-
ing different mRNAs allowing for increasing the throughput (Wei et al., 2014).

miRNA extension

This strategy employs miRNA extension with a reverse transcriptase on endogenous target 
mRNAs. Purified hybrid 3’-cDNA-miRNA-5’ molecules are used in a second round of 
reverse transcription and sequenced (Vatolin et al., 2006). However, this method is prone to 
artifacts stemming from the variability of miRNA:target mRNA base pairing, which would 
result in highly variable efficiency of reverse transcription priming.

Immunoprecipitation of small RNA:target RNA complexes

There is a large number of immunoprecipitation strategies aimed at purifying small RNA:tar-
get RNA complexes, usually by immunoprecipitating them through an Argonaute protein. 
Initial experiments immunoprecipitated native Argonaute complexes without including 
a cross-linking step; immunopurified RNAs were analyzed on microarrays (Easow et al., 
2007; Hendrickson et al., 2008; Karginov et al., 2007). An adaptation of Argonaute immu-
noprecipitation for detection of specific miRNA targets is a RIP competition assay wherein 
anti-miR is titrated into cytosolic extracts prior to Argonaute immunoprecipitation. Direct 
target transcripts displaced by anti-miR are then identified based on their depletion from IP 
fraction (Androsavich and Chau, 2014)
The immunoprecipitation strategy was further developed into a number of methods for 

isolation of small RNAs bound to their targets, which include high throughput sequencing 
of crosslinking immunoprecipitation (HITS-CLIP) and crosslinking ligation and sequenc-
ing of hybrids (CLASH) methods (reviewed more detail in Broughton and Pasquinelli, 
2016; Jaskiewicz et al., 2012). 
There are several modifications of the basic HITS-CLIP. An improvement of the basic 

HITS-CLIP approach (Chi et al., 2009; Zisoulis et al., 2010) came with crosslinking based 
on photoactivatable nucleosides such as 4-thiouridine, a CLIP modification known as pho-
toactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) 
(Hafner et al., 2010; Hafner et al., 2012). PAR-CLIP offers more efficient crosslinking, 
hence up to three orders of magnitude better RNA recovery than HITS-CLIP (Hafner et al., 
2010). Furthermore, PAR-CLIP also allows for precise localization of miRNA binding site 
as cross-linked 4-thiouridine marks the cross-linked site with frequent thymidine to cytidine 
change, which is revealed by deep sequencing (Hafner et al., 2010).
Another modified strategy is covalent ligation of endogenous Argonaute-bound RNAs 

crosslinking immunoprecipitation (CLEAR-CLIP) which enriches miRNAs ligated to their 
endogenous mRNA targets (Moore et al., 2015). CLEAR-CLIP approach is in principle 
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the same as the above-mentioned CLASH (Helwak et al., 2013; Helwak and Tollervey, 
2014). Adding ligation of miRNAs to their mRNA targets yields chimeric reads allowing 
for robust detection miRNA:target RNA interactions occurring in vivo. 

Data mining of CLIP data provides not only a comprehensive list of miRNA:target 
mRNA interactions but also provides insights into the principles governing these inter-
actions, which in turn facilitate further improvement of target prediction algorithms. For 
example, an in vivo C. elegans data set and reanalysis of published mammalian AGO-CLIP 
data yielded approximately 17,000 miRNA:target site interactions. This strategy identified 
canonical, noncanonical, and nonconserved miRNA:targets with about 80% of miRNA 
interactions having perfect or partial seed complementarity (Grosswendt et al., 2014). 
Another comprehensive analysis of 34 Argonaute HITS-CLIP datasets from human and 
mouse cells revealed that many heteroduplexes are “non-canonical” i.e. their seed region 
comprises G:U and bulge combinations (Clark et al., 2014).

CLIP strategies are nowadays popular for high-throughput analysis of physiological miR-
NA targets (Chi et al., 2012; Chi et al., 2009; Clark et al., 2014; Grosswendt et al., 2014; 
Haecker and Renne, 2014; Hafner et al., 2010; Imig et al., 2015; Leung et al., 2011; Liu 
et al., 2014a; Marin et al., 2012; Zisoulis et al., 2010) and it is accompanied with a number 
of algorithms and databases facilitating identification of miRNA targets in high-throughput 
CLIP data (Balaga et al., 2012; Bandyopadhyay et al., 2015; Chou et al., 2013; Erhard et al., 
2013; Guo et al., 2015; Hsieh and Wang, 2011; Hsu et al., 2015; Liu et al., 2013; Paraskev-
opoulou et al., 2013a; Rennie et al., 2014; Wang et al., 2013; Wang et al., 2014; Xie et al., 
2014; Yang et al., 2011).

Degradome analysis

It was mentioned above in the section discussing target prediction for plant miRNAs that 
when small RNA-target RNA interaction results in RNAi-like cleavage, identification of 
targets can be experimentally augmented by degradome sequencing. This sequencing allows 
for identification of RNA termini, including those created by RNAi-like cleavage. Thus, if 
there are mRNAs cleaved by a miRNA after its 10th nucleotide, one would observe align-
ment of RNA termini matching the predicted miRNA binding site. Degradome analysis 
usually defines a category of transcripts predicted to be endonucleolytically cleaved and then 
are cleavage positions compared to predicted miRNA binding sites (Ding et al., 2016; Fan 
et al., 2016; Li and Sunkar, 2013; Shao et al., 2013; Wang et al., 2016; Xing et al., 2014). 
Degradome analysis and target prediction has been integrated in to a web resource com-
PARE for plant miRNA target analysis (Kakrana et al., 2014). Degradome analysis can be 
also used in animals to identify rare miRNA targets suppressed by slicing (Park et al., 2013).

Conclusions

Given the nature of the interaction between small RNAs and their target RNAs, target pre-
diction will always yield putative targets with partial complementary. For seed-mediated 
interactions, there can easily be hundreds of targets predicted for any small RNA acting 
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as a miRNA. This is due to the combination of the following facts: a) a specific hexam-
er sequence occurs in a random sequence with a theoretical frequency of 1/4096 and b) 
exons of protein-coding genes constitute 70–80 megabases of well-annotated mammalian 
genomes (and exome size of eukaryotic genomes might not be dramatically smaller than 
that). Therefore, a hexamer would occur in a mammalian exonic sequence on average ~20 
000x and if 1% of these hexamers would fit other target site prediction criteria, that would 
leave on average 200 potential binding sites.
The bottom line is that applying a minimal base pairing criterion for miRNA-like inter-

action will identify a number of potential targets in any eukaryotic organism. At the same 
time, sequence based target prediction is insufficient to assess whether there will be target 
repression induced by a specific small RNA when introduced into an animal or mammal 
because there is a number of other critical parameters, which must be considered. Two of 
them stand out above anything else: 1) the amount of the specific small RNA loaded on 
Argonaute proteins, and 2) target site accessibility. Thus, target assessment of small RNAs 
needs to address these two parameters. While target accessibility can be considered a rela-
tively common feature for all organisms since the same rules would apply for RNA folding 
and interference caused by RNA binding proteins (translation machinery etc.), loading of 
a small RNA onto Argonaute proteins depends on factors which may dramatically differ 
between different organisms. For example, organisms that exhibit environmental RNAi 
would be much more prone to the uptake of small RNAs. Factors such as length, chemical 
modifications, or terminal nucleotides of a small RNA, could underlie differences in sort-
ing and loading to the various Argonaute proteins. Thus, possible fates of a specific small 
RNA in a specific organism are difficult to predict and should be tested experimentally. The 
most informative parameter is the amount (number of molecules) of a small RNA in ques-
tion, which would be loaded on an Argonaute protein (e.g. AGO1 and AGO2 in animals), 
because it could be compared with known kinetic data to assess the strength of potential 
repressive effects it could achieve in vivo.
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