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ABSTRACT

RNA silencing denotes sequence-specific repression mediated by small RNAs. In vertebrates, there are two closely 
related pathways, which share several protein factors: RNA interference (RNAi) and microRNA (miRNA) path-
way. The miRNA pathway regulates endogenous protein-coding gene expression and has been implicated in many 
biological processes. RNAi generally serves as a form of innate immunity targeting viruses and mobile elements. 
This text reviews miRNA and RNAi pathways in birds. Although the available literature on RNA silencing in 
birds is very limited, many features can be deduced from the genomic data in the public domain. miRNA, RNAi 
and other dsRNA-responding pathways in birds appear very much like those in mammals, important bird-specific 
features of RNA silencing pathways are yet to be identified. The miRNA pathway is likely the dominant small 
RNA pathway while the existence and functionality of endogenous RNAi remains unclear. Some variations may 
be present in the main bird antiviral interferon system.

Introduction

Birds (Aves) belong together with mammals and fishes to the group Craniata within chor-
dates. Some of the birds are of high economic importance (food industry) or medical rel-
evance (viral vectors causing zoonoses). Bird ancestors branched of mammalian ancestors 
over 300 MYA when the synapsid lineage leading to mammals branched of the sauropsid 
lineage leading to dinosaurs and birds. There are ~9000 extant bird species (Margulis and 
Schwartz, 1998). During their evolution, birds evolved numerous physiological adaptations 
in which they differ from mammals, including feathers, shelled eggs with external devel-
opment, or different sex chromosome system, to name a few. At the same time, they are 
the closest mammal-related group covered in this series, in terms of synteny and sequence 
similarity. This is useful for assessing features of dsRNA and miRNA pathways because 
the available literature on RNA silencing in birds is very limited. However, many features 
can be deduced from the genomic data in the public domain. miRNA, RNAi and other 
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dsRNA-responding pathways in birds are very much like those in mammals and the literature 
does not report an important bird-specific feature in RNA silencing pathways. Since mech-
anistical principles of vertebrate miRNA and RNAi pathways were introduced in the first 
two reviews of this series (Svoboda, 2019a, b) and in further detail elsewhere (Bartel, 2018; 
Svoboda, 2014), I will focus here directly on features of these pathways described for birds.

Dicer

According to the complete genome sequences of chicken and Zebra Finch, birds have one 
Dicer protein. Chicken Dicer has been assigned to the chromosome 5 according to the radi-
ation hybrid mapping (Tian et al., 2007) which is in agreement with the current chicken 
genome map. There is no detailed analysis of avian Dicer specificity and activity, which have 
to be inferred indirectly from other results. Chicken Dicer can process both, long dsRNA and 
miRNA precursors, as evidenced by induction of RNAi with long dsRNA (Mauti et al., 2008; 
Pekarik et al., 2003) and hundreds of avian miRNAs in the miRBase.
The common Dicer product size seems to be 21–23nt with a typical size of 22nt. This 

information can be inferred from available miRBase data (Fig. 1). Thus, the avian Dicer 
produces small RNAs with the same sizes as the mammalian Dicer (Fig. 1). Another pos-
sible substrate of Dicer in birds might be snoRNAs, although the biological significance of 
this observation remains unclear (Taft et al., 2009).

It is unclear if there are functionally different avian Dicer isoforms as is the case in 
murine oocytes and somatic cells (Flemr et al., 2013). There is one report of different Dicer 
splice variant in goose (Anser cygnoides) where one variant lacks a linker between DEAD 
box and helicase C domains at the N-terminus (gDicer-b) (Hu et al., 2014). The shorter iso-
form gDicer-b is present in multiple tissues, however its functional significance is unclear. 
The truncation is found in the N-terminus, which is associated with substrate selectivity and 
efficient processing. Therefore, one might speculate about some functional divergence in 
substrate processing between the two isoforms. However, there is no experimental evidence 
at the moment. The only available data, so far, concern cloning of the short isoform and 
expression analysis of several tissues and follicular stages by RT-PCR (Hu et al., 2014).

dsRBPs

dsRBP binding partners of Dicer have not been studied, so far. Interestingly, the chick-
en genome contains a dsRBP, which is related to TARBP2 and PACT, suggesting a more 
ancestral vertebrate state and a reduced crosstalk between RNAi and the interferon pathway.

Argonaute proteins

Argonaute family proteins are effectors of RNA silencing mechanisms. They are divided 
into two subfamilies: AGO proteins, which accommodate miRNAs and siRNAs, and PIWI 
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proteins, which accommodate piRNAs. Avian AGO proteins have not been characterized 
in a published report but public chicken genome data show that the setup is the same as 
in mammals: Studies in chicken revealed four AGO proteins, where AGO1, 3, and 4 are 
encoded within one locus on chromosome 23 and AGO2 is encoded separately on chro-
mosome 2. This arrangement appears to be shared within mammals and birds (Zhou et al., 
2010). Additional information about avian AGOs can be inferred indirectly from the exist-
ence of functional RNAi and miRNA pathways (discussed below), which implies that at 
least one AGO protein is a “slicer” (presumably AGO2, given its conserved role as a slicer 
from Drosophila to mammals). Avian AGO proteins can also mediate post-transcriptional 
silencing guided by imperfectly base paired miRNAs.

In addition, there were two publications found, which mention avian PIWI proteins, 
which primarily control genome integrity in the germline and are not within the scope of 
this report (Kim et al., 2012; Lim et al., 2013). 

Other factors

Birds have additional proteins involved in other dsRNA responses, which are either asso-
ciated with adenosine deamination (Herbert et al., 1995) or interferon response. Interferon 
response factors, which recognize some form of dsRNA and are also found in mammals, 
include MDA5 (Hayashi et al., 2014; Lee et al., 2012, 2014), RIG-I (Chen et al., 2015; Li 
et al., 2014a; Xu et al., 2015), and PKR (Gonzalez-Lopez et al., 2003; Lostale-Seijo et al., 
2016; Zhang et al., 2014). Interestingly, chicken lack the RHA/DHX9 homolog (Sato et al., 
2015). The antiviral response to dsRNA will be discussed further below.

miRNA pathway

According to miRBase (Kozomara and Griffiths-Jones, 2014), bird genomes encode hun-
dreds of miRNAs (Table 1) During the systematic literature review, miRNA-related pub-
lications lacking a mechanistic molecular insight into the miRNA pathway were the most 
common class of annotated publications for birds (~50% of all selected publications). These 
publications fall into four basic categories:
a)	annotations of novel miRNAs, including high-throughput expression analyses (for exam-
ple (Godnic et al., 2013; Luo et al., 2012; Taft et al., 2009) and many others). This 
category also includes the original chicken and Zebra Finch genome annotation papers 
(International Chicken Genome Sequencing, 2004; Warren et al., 2010).

b)	studies of miRNAs in different biological contexts, including reproduction (Lee et al., 
2015; Lee et al., 2011), skeletomuscular apparatus (Chen et al., 2009a), bird song phys-
iology (Gunaratne et al., 2011), growth/weight gain (Li et al., 2013), and many others; 
their comprehensive listing would be beyond the scope of this report.

c)	studies of relationship between miRNAs and the immune system, especially antivi-
ral – these will be discussed further below in the section 3.1.2.7. Other dsRNA response 
pathways

Introduction_to_RNAi.indd   121Introduction_to_RNAi.indd   121 09.07.20   8:3409.07.20   8:34



BIRDS

122

d) false positives of the search- reports describing mRNA knock-down through short hair-
pin	RNAs	adopting	miRNA-like	appearance.	There	is	a	series	of	nearly	identical	method-
ological papers, apparently published twice in 2006 and 2013, which fall in this category 
(Deng et al., 2015; Lin et al., 2006a; Lin et al., 2006b; Lin and Ying, 2006; Lin et al., 
2013a; Lin et al., 2013b; Lin and Ying, 2013; Ying and Lin, 2009; Ying et al., 2010) and 
several other publications concerning development and adaptations of shRNA systems 
(e.g.	(Andermatt	et	al.,	2014;	Chen	et	al.,	2011;	Das	et	al.,	2006).	These	articles	actually	
belong to the RNAi section below but due to the confusing use of nomenclature, they 
would also fall into the miRNA category.
Taken	together,	essentially	all	miRNA-related	publications	dealt	with	miRNA	annota-

tion,	analysis	of	biological	functions	of	miRNAs,	and	adoption	of	miRNAs	for	artifi	cial	
knock-down systems allowing for suppressing any gene of interest. Avian miRNA-related 
publications	did	not	reveal	any	avian-specifi	c	mechanistic	insight	into	miRNA	biogenesis,	
in which birds would differ from the general consensus for mammals, or other vertebrates 
in	general.	The	complete	list	of	all	miRNA-related	publications	is	available	in	a	library	
accompanying this section.

Figure 1 Avian miRNA lengths
The left graph depicts size distribution of all 994 chicken miRNAs deposited in the miRBase (release 21). 
For comparison, the right graph shows size distribution of 721 high-confi dence murine miRNAs.

Table 1 Bird miRNAs in the miRBase (release 22.1 (Kozomara and Griffi ths-Jones, 2014)):

species [genome annotation] miRNA precursors mature miRNA

Gallus gallus [Gallus-gallus-4.0] 882 1232

Taeniopygia guttata [taeGlu3.2.4] 247  334

RNAi 

Avian RNAi-related literature deals mainly with experimental knock-down of gene expres-
sion, which does not reveal much about the physiological role of RNAi pathway in birds. 
These	studies	cannot	all	be	included	in	the	report	due	to	the	high	number,	but	they	are	
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available in the reference library accompanying this section). What can be inferred from 
those studies is that birds have the complete molecular mechanisms for canonical RNAi 
and can efficiently execute it. This is evidenced by efficient knock-downs with long dsRNA 
(Mauti et al., 2008; Pekarik et al., 2003). 

Published exogenous RNAi data provide insights into possible routes nucleic acids can 
become biologically active in birds and concern areas of EFSA main interests as various 
forms of RNAi technology (siRNAs or transgenic) were considered a way for preventing 
virulent strain circulation in poultry (O’Neill, 2007) although results of these efforts were 
relatively modest, being typically developed in cultured cells (Hutcheson et al., 2015; Saha-
re et al., 2015; Stewart et al., 2011; Yin et al., 2010). Exogenous RNAi in vivo required 
non-physiological manipulations such as 1) plasmid or siRNA electroporation (Andermatt 
et al., 2014; Baeriswyl et al., 2008; Mauti et al., 2008; Pekarik et al., 2003; Sato et al., 2004; 
Wilson and Stoeckli, 2011, 2012), 2) transfection (Dai et al., 2005; Lin et al., 2006a; Lin 
et al., 2013a; Wei et al., 2015), 3) recombinant virus (Lambeth et al., 2009b), or 4) recom-
binant lentivirus delivery (Chen et al., 2009b; Haesler et al., 2007). Altogether, these data 
suggest that exogenous RNAi would not be achieved by just exposing birds to small RNAs 
or their precursors in the environment or food. 
Regarding the endogenous RNAi, it remains what its physiological role is. There are 

three possible roles for endogenous RNAi: antiviral defense, genome defense against ret-
rotransposons and control of gene expression. These roles would be associated with pro-
duction of viral siRNAs, retrotransposon siRNAs and mRNA-targeting siRNAs in vivo. 
However, an unequivocal evidence for existence of these classes and their function was 
not provided yet.

One report attempted to examine the role of Dicer in retrotransposon repression. It was 
shown that the loss of Dicer in chicken cells does not result in accumulation of chicken 
CR1 retrotransposon while introduction of a human L1 element into cells lacking Dicer 
results in accumulation of L1 transcripts and increased retrotransposition (Lee et al., 2009). 
However, these data are difficult to interpret as different scenarios could lead to the same 
observations, especially downstream effects of a perturbed miRNA pathway and chroma-
tin-mediated silencing of CR1.

Other dsRNA response pathways

Chromatin regulation by small RNAs

Two studies involving bird models brought up a possible nuclear function of Dicer and its 
link to chromatin regulation, which is of the unsettled issues in vertebrate models. Despite 
a decade of research, there is still no proposed molecular mechanism explaining these phe-
nomena while the literature contains a number of contradicting observations.

Fukagawa et al. produced a conditional loss-of-function Dicer mutant in a chicken-hu-
man hybrid DT40 cell line that contains human chromosome 21. The loss of Dicer resulted 
in cell death and accumulation of premature sister chromatid separation. Furthermore, aber-
rant accumulation of transcripts from human centromeric repeats was also found suggesting 
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loss of heterochromatin at centromeres. While localization of two heterochromatin pro-
teins (Rad21 and BubR1) was abnormal, localization of core centromeric heterochroma-
tin proteins CENP-A and -C was normal (Fukagawa et al., 2004). Although the article 
is highly cited (335 times up to date according to WOS core collection), the molecular 
mechanism of the effect remains elusive. It is possible that the phenomenon is an indirect 
consequence of perturbing the miRNA pathway. Furthermore, the model system is unique 
and human heterochromatin sequences might exhibit unusual behaviour in the chicken 
nuclear environment.

Giles et al. examined a 16 kilobase (kb) heterochromatin domain in the chicken eryth-
roid progenitor cell line 6C2. RNAi-mediated downregulation of the enzyme Dicer result-
ed in increased histone acetylation and transcript levels from the heterochromatin locus 
while compact chromatin structure became more accessible to restriction endonucleases. 
It was also shown that chicken AGO2 homolog binds the 16 kb region in a Dicer-depend-
ent manner and is necessary for a condensed chromatin structure (Giles et al., 2010). The 
article has been cited 26 times up to date according to WOS (core collection), yet there 
was no follow up providing any mechanistic explanation of the phenomenon. It is pos-
sible that the observed effects could be an indirect effect of suppression of the miRNA 
pathway or even an experimental artefact. Additional controls and experiments would be 
needed to address these concerns and clarify inconsistencies with other reports. Therefore, 
this report should be considered an interesting observation without a clear mechanistic 
explanation.
Taken together, small RNA-mediated chromatin changes in birds remain an open ques-

tion. Without knowing the molecular mechanism, especially that of biogenesis of small 
RNAs regulating chromatin and their mode of action, there is simply not enough informa-
tion for qualified conclusions.

Antiviral defense – interferon response and crosstalk with RNA silencing

Many studies deal with various aspects of viral infections in birds or avian cells. The most 
studied model for viral infections in birds is Marek’s disease, which is a consequence of 
a Herpesvirus infection in poultry. Publications linked to Marek’s disease addressed virus 
encoded miRNAs (Coupeau et al., 2012; Luo et al., 2011; Morgan et al., 2008; Muylkens 
et al., 2010; Strassheim et al., 2012; Xu et al., 2011; Yao et al., 2008; Zhao et al., 2011; 
Zhao et al., 2009), changes in host miRNA expression during infection (Dinh et al., 2014; 
Han et al., 2016; Lambeth et al., 2009a; Li et al., 2014b; Li et al., 2014c; Lian et al., 2015a; 
Lian et al., 2015b; Stik et al., 2013; Tian et al., 2012; Xu et al., 2010; Yao et al., 2008), or 
attempts to block the virus with RNAi (Chen et al., 2009b; Chen et al., 2008; Lambeth et al., 
2009b). A similar set of articles has been found for other studied viruses infecting birds – 
e.g. avian influenza virus H5N1 and H9N2, bursal disease virus, subgroup J avian leucosis 
virus. The complete list is available in the library accompanying this section.

Reports concerning host and virus-encoded miRNAs generally represent adaptations 
manipulating the miRNA pathway for the benefit of the pathogen. At the same time, these 
articles did not reveal some unique adaptation of the chicken miRNA pathway, which 
would differ from molecular mechanisms and principles described in the previous section. 
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The	last	group	of	articles	reviewed	here	represent	publications	covering	the	interferon	
system, the common antiviral system induced by dsRNA and other RNA species (Kar-
pala et al., 2008; Kint et al., 2015; Lostale-Seijo et al., 2016). Birds generally utilize the 
same antiviral interferon system including its key dsRNA sensing proteins: PKR (Gonza-
lez-Lopez	et	al.,	2003;	Lostale-Seijo	et	al.,	2016;	Zhang	et	al.,	2014),	RIG-I	(Chen	et	al.,	
2015; Li et al., 2014a; Xu et al., 2015), and MDA5 (Hayashi et al., 2014; Lee et al., 2012, 
2014),	2’,5’-OAS	(Lee	et	al.,	2014;	Villanueva	et	al.,	2011).	However,	there	seem	to	be	
some	species-specifi	c	variations.	For	example,	RIG-I	is	found	in	some	birds,	such	as	ducks	
or pigeons (Chen et al., 2015; Xu et al., 2015) but not in chicken, which lack RIG-I and 
the RNA sensing RHA/DHX9 helicase homolog (Sato et al., 2015). Although the lack of 
RIG-I is partially compensated by chicken MDA5 activity (Hayashi et al., 2014; Karpala 
et al., 2011) the absence of RIG-I-like function may contribute to the chicken’s susceptibil-
ity	to	highly	pathogenic	infl	uenza	(Karpala	et	al.,	2011;	Li	et	al.,	2014a).

Adenosine deamination

Birds have also adenosine deaminases that act on RNA (Herbert et al., 1995) but their phys-
iological	signifi	cance	in	birds	is	unknown	at	the	moment.	

Figure 2 Overview of avian pathways 
dsRNA and miRNA pathways in birds are very much similar to the mammalian ones with some minor 
exceptions. Birds have only a single dsRBP homologous to TARBP2, and lack PACT ortholog. 
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Summary

In terms of the mode-of-action of dsRNA and miRNA pathways, birds are closely resem-
bling mammals despite over 300 millions of years of separate evolution. The molecular 
mechanism of RNAi and miRNA pathways seems to be essentially identical to that of 
mammals except of a single dsRBD instead of two different ones. The significance of this 
difference is unclear. The miRNA pathway seems to be the dominant small RNA pathway 
while the existence and functionality of endogenous RNAi remains unclear. Some varia-
tions were found in the interferon system (lack of RIG-I in chicken), which appears to be 
the main antiviral system in birds.
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